358 research outputs found

    Adaptive Learning Based Whale Optimization and Convolutional Neural Network Algorithm for Distributed Denial of Service Attack Detection in Software Defined Network Environment

    Get PDF
    SDNs (Software Defined Networks) have emerged as a game-changing network concept. It can fulfill the ever-increasing needs of future networks and is increasingly being employed in data centres and operator networks. It does, however, confront certain fundamental security concerns, such as DDoS (Distributed Denial of Service) assaults. To address the aforementioned concerns, the ALWO+CNN method, which combines ALWOs (Adaptive Learning based Whale Optimizations) with CNNs (Convolution Neural Networks), is suggested in this paper. Initially, preprocessing is performed using the KMC (K-Means Clustering) algorithm, which is used to significantly reduce noise data. The preprocessed data is then used in the feature selection process, which is carried out by ALWOs. Its purpose is to pick out important and superfluous characteristics from the dataset. It enhances DDoS classification accuracy by using the best algorithms.  The selected characteristics are then used in the classification step, where CNNs are used to identify and categorize DDoS assaults efficiently. Finally, the ALWO+CNN algorithm is used to leverage the rate and asymmetry properties of the flows in order to detect suspicious flows specified by the detection trigger mechanism. The controller will next take the necessary steps to defend against DDoS assaults. The ALWO+CNN algorithm greatly improves detection accuracy and efficiency, as well as preventing DDoS assaults on SDNs. Based on the experimental results, it was determined that the suggested ALWO+CNN method outperforms current algorithms in terms of better accuracies, precisions, recalls, f-measures, and computational complexities

    Unique Locomotive Wheelchair Robot Mechanism using Gesture and Android

    Get PDF
    Wheelchairs are used by the people who cannot walk due to physical illness, injury or other disability. Elderly peoples are unable to walk, we need to take care of these peoples every days .so, elderly people to maneuver a mechanical wheelchair, which many of them normally use for locomotion. Hence there is a need for designing a wheelchair that is intelligent and provides easy transportation for the physically challenged peoples and elderly peoples. In this context, an attempt has been made to propose a thought controlled wheelchair, which uses the captured signals from the user’s action and processes it to control the wheelchair. The signals which are captured and translated into movement commands by the microcontroller which in turn move the wheelchair

    Effect of municipal solid waste and agricultural composts on growth and yield of fenugreekseeds (trigonella foenum graecum)

    Get PDF
    Composting is a natural biological process which is environmentally friendly waste management technology, helpful for quantification of organic matter, leading to recycling of valuable nutrients. The present study deals with the comparison of municipal solid waste and agricultural composts, nutritional quality. The fully degraded solid waste samples were taken and analysed for physico-chemical characteristics and heavy metals concentrations (Cadmium, Copper, Lead, Mercury and Arsenic). The compost maturity tests (germination and plant bioassay) were evaluated using Fenugreek seeds (Trigonella foenum graecum). The results, shows that, more salts and metal ion concentrations are present in MSW compost sample, compared to agricultural compost sample. Heavy metals concentrations are within the permissible limits of Ohai EPA standards in both the compost samples. In the germination and plant bioassay tests, MSW compost samples were found to be more favorable compared to agricultural compost samples. The overall study concluded that, both the samples were safe for use in agricultural fields. Further, municipal solid waste compost has more micronutrients, hence helpful for soil enrichment

    Isolation and identification of Micrococcus roseus and Planococcus sp. from schirmacher oasis, Antarctica

    Get PDF
    Five cultures isolated from soil samples collected in Schirmacher oasis, Antarctica, have been identified as members of the family Micrococcaceae, with 3 belonging to the genusMicrococcus and two toPlanococcus. The 3 Micrococcus isolates (37R, 45R and 49R) were red-pigmented and h a d ~ 75 mol% G + C in their DNA; they were identified as Micrococcus roseus. The twoPlanococcus isolates (30Y and Lz3OR) were yellow and orange in colour, and had 43·5 and 40·9 mol % G + C in their DNA respectively; they were identified as Planococcus sp

    Deformability of Tumor Cells versus Blood Cells

    Get PDF
    The potential for circulating tumor cells (CTCs) to elucidate the process of cancer metastasis and inform clinical decision-making has made their isolation of great importance. However, CTCs are rare in the blood, and universal properties with which to identify them remain elusive. As technological advancements have made single-cell deformability measurements increasingly routine, the assessment of physical distinctions between tumor cells and blood cells may provide insight into the feasibility of deformability-based methods for identifying CTCs in patient blood. To this end, we present an initial study assessing deformability differences between tumor cells and blood cells, indicated by the length of time required for them to pass through a microfluidic constriction. Here, we demonstrate that deformability changes in tumor cells that have undergone phenotypic shifts are small compared to differences between tumor cell lines and blood cells. Additionally, in a syngeneic mouse tumor model, cells that are able to exit a tumor and enter circulation are not required to be more deformable than the cells that were first injected into the mouse. However, a limited study of metastatic prostate cancer patients provides evidence that some CTCs may be more mechanically similar to blood cells than to typical tumor cell lines.Janssen Pharmaceutical Ltd.National Cancer Institute (U.S.). Physical Sciences Oncology Center (U54CA143874)MIT-Harvard Center of Cancer Nanotechnology Excellence (Grant 26697290-47281-A)Stand Up To CancerNational Institutes of Health (U.S.). P41 Biotechnology Resource CenterNational Cancer Institute (U.S.) (Koch Institute Support Grant P30-CA14051

    Biodegradable nano-films for capture and non-invasive release of circulating tumor cells

    Get PDF
    Selective isolation and purification of circulating tumor cells (CTCs) from whole blood is an important capability for both clinical medicine and biological research. Current techniques to perform this task place the isolated cells under excessive stresses that reduce cell viability, and potentially induce phenotype change, therefore losing valuable information about the isolated cells. We present a biodegradable nano-film coating on the surface of a microfluidic chip, which can be used to effectively capture as well as non-invasively release cancer cell lines such as PC-3, LNCaP, DU 145, H1650 and H1975. We have applied layer-by-layer (LbL) assembly to create a library of ultrathin coatings using a broad range of materials through complementary interactions. By developing an LbL nano-film coating with an affinity-based cell-capture surface that is capable of selectively isolating cancer cells from whole blood, and that can be rapidly degraded on command, we are able to gently isolate cancer cells and recover them without compromising cell viability or proliferative potential. Our approach has the capability to overcome practical hurdles and provide viable cancer cells for downstream analyses, such as live cell imaging, single cell genomics, and invitro cell culture of recovered cells. Furthermore, CTCs from cancer patients were also captured, identified, and successfully released using the LbL-modified microchips

    Phosphorylation of estrogen receptor α serine 167 is predictive of response to endocrine therapy and increases postrelapse survival in metastatic breast cancer

    Get PDF
    INTRODUCTION: Endocrine therapy is the most important treatment option for women with hormone-receptor-positive breast cancer. The potential mechanisms for endocrine resistance involve estrogen receptor (ER)-coregulatory proteins and crosstalk between ER and other growth factor signaling networks. However, the factors and pathways responsible for endocrine resistance are still poorly identified. METHODS: Using immunohistochemical techniques, we focused on the expression and phosphorylation of hormone receptors themselves and examined the phosphorylation of ER-α Ser118 and ER-α Ser167 and the expression of ER-α, ER-β1, ER-βcx/β2, progesterone receptor (PR), PRA, and PRB in the primary breast carcinomas of 75 patients with metastatic breast cancer who received first-line treatment with endocrine therapy after relapse. RESULTS: Phosphorylation of ER-α Ser118, but not Ser167, was positively associated with overexpression of HER2, and HER2-positive tumors showed resistance to endocrine therapy. The present study has shown for the first time that phosphorylation of ER-α Ser167, but not Ser118, and expression of PRA and PRB, as well as ER-α and PR in primary breast tumors are predictive of response to endocrine therapy, whereas expression of ER-β1 and ER-βcx/β2 did not affect response to the therapy. In addition, patients with either high phosphorylation of ER-α Ser167, or high expression of ER-α, PR, PRA, or PRB had a significantly longer survival after relapse. CONCLUSION: These data suggest that phosphorylation of ER-α Ser167 is helpful in selecting patients who may benefit from endocrine therapy and is a prognostic marker in metastatic breast cancer

    Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes.

    Get PDF
    A considerable body of research indicates that mammary gland branching morphogenesis is dependent, in part, on the extracellular matrix (ECM), ECM-receptors, such as integrins and other ECM receptors, and ECM-degrading enzymes, including matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of metalloproteinases (TIMPs). There is some evidence that these ECM cues affect one or more of the following processes: cell survival, polarity, proliferation, differentiation, adhesion, and migration. Both three-dimensional culture models and genetic manipulations of the mouse mammary gland have been used to study the signaling pathways that affect these processes. However, the precise mechanisms of ECM-directed mammary morphogenesis are not well understood. Mammary morphogenesis involves epithelial 'invasion' of adipose tissue, a process akin to invasion by breast cancer cells, although the former is a highly regulated developmental process. How these morphogenic pathways are integrated in the normal gland and how they become dysregulated and subverted in the progression of breast cancer also remain largely unanswered questions

    Discovery and functional characterisation of a luqin-type neuropeptide signalling system in a deuterostome

    Get PDF
    The results presented in this paper have not been published previously in whole or in part. The work reported in this paper was supported by grants from the BBSRC awarded to M.R.E (BB/M001644/1) and J.H.S. (BB/M001032/1). L.A.Y.G is supported by a PhD studentship awarded by the Mexican Council of Science and Technology (CONACyT studentship no. 418612) and Queen Mary University of London. We are grateful to Philipp Bauknecht and Gáspár Jékely (Max Planck Institute for Developmental Biology, Tübingen, Germany) for providing the Gα16 plasmid and the CHO-G5A cells, which were originally generated by Baubet et al. (Proc Natl Acad Sci USA 97:7260–7265). We are also grateful to Phil Edwards for his help with collecting starfish, Paul Fletcher for maintaining our seawater aquarium and Maria Eugenia Guerra for creating the silhouettes of animals used in Figure 7
    corecore